United States Patent

US009124621B2

(12) (10) Patent No.: US 9,124,621 B2
Manadhata et al. 45) Date of Patent: Sep. 1, 2015
(54) SECURITY ALERT PRIORITIZATION 8,341,745 B1* 12/2012 Chauetal. ..., 726/24
2009/0307772 Al 12/2009 Markham et al.
(71) Applicant: Hewlett-Packard Development 2013/0179974 Al 72013 Manadhata et al.
Company, L.P, Houston, TX (US) FOREIGN PATENT DOCUMENTS
(72) Inventors: Pratyusa Kumar Manadhata, WO WO 2005114354 AL * 12/2005
Piscataway, NJ (US); Prasad V. Rao,
Metuchen, NI (US) OTHER PUBLICATIONS
(73) Assignee: IéIeWIett-PaIchl? rdHDeveloplfI)I(en[tJS Porras, P.A. et al., A Mission-impact-based Approach to Infosec
ompany, L.F., Houston, Us) Alarm Correlation, Proceedings of the 5th international conference
(*) Notice: Subject to any disclaimer, the term of this on Recent advances in intrusion detection, 2002, pp. 95-114.
patent is extended or adjusted under 35 Zomlot, L. et al., Prioritizing Intrusion Analysis Using Dempster-
U.S.C. 154(b) by 124 days shafer Theory, Proceedings of the workshop on Security and artificial
o ’ intelligence, Oct. 21, 2011, pp. 59-70.
(21) Appl. No.: 13/629,222 Alexa: Top Sites, accessed at http://www.alexa.com/topsites,
accessed on Dec. 17,2014, 112 pages.
(22) Filed: Sep. 27, 2012 Anderson, S. D. et al., “Spamscatter: characterizing internet scam
hosting infrastructure”, Proceedings of 16th USENIX Security Sym-
(65) Prior Publication Data posium on USENIX Security Symposium Article No. 10, 2007, 14
ages.
US 2014/0090056 A1 Mar. 27, 2014 b .
(Continued)
(51) Int.ClL
HO4L 29/06 (2006.01)
GOG6F 21/55 (2013.01) Primary Examiner — Edward Zee
(52) US.ClL (74) Attorney, Agent, or Firm — Hewlett-Packard Patent
CPC HO4L 63/1416 (2013.01); GO6F 21/552 Department
(2013.01); HO4L 63/14 (2013.01); HO4L
63/1433 (2013.01); GOGF 2221/2101 (2013.01);
GOG6F 2221/2105 (2013.01); GO6F 2221/2149 (57) ABSTRACT
(2013.01)
(58) Field of Classification Search In one implementation, a security alert prioritization system
CPC . HO4L 63/14; HO4L 63/1408; HO4L 63/1416; identifies a host and a domain associated with a security alert
HOA4L 63/1425; HO4L 63/1433 that was generated in response to a communication between
USPC et 726/22, 23, 25 the host and the domain. The security alert prioritization
See application file for complete search history. system accesses a security state associated with the host and
a security state associated with the domain, and compute a
(56) References Cited priority of the security alert based on the security state asso-
U.S. PATENT DOCUMENTS ciated with the host and the security state associated with the
o domain.
6,704,874 B1* 3/2004 Porrasetal. 726/22

7,379,993 B2 5/2008 Valdes et al.
7,594,266 B2 9/2009 Mattsson et al.

600
™

20 Claims, 6 Drawing Sheets

FOR EACH SECURITY ALERT

DETERMINE HOST AND
DOMAIN ASSOCIATED WITH
SECURITY ALERT

ADD REFERENCES FOR HOST
AND DOMAIN TO HOST-

DOMAIN ACCESS MAP

GOMPUTE INITIAL SEGURITY
STATES OF HOST AND
DOMAINS IN HOST-DOMAIN
ACCESS MAP BASED ON
CONFIDENGE MEASURE

l 850

APPLY BELIEF PROPAGATION
TO HOST-DOMAIN ACCESS
GRAPH TO ASSIGN SEGURITY
STATE FOR EACH NODE IN
HOST-DOMAIN AGCESS MAP

US 9,124,621 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Antonakakis, M. et al., “Building a Dynamic Reputation System for
DNS”, Proceedings of the 19th USENIX conference on Security,
2010, 17 pages.

Bilge, L. et al., “Exposure: Finding Malicious Domains Using Pas-
sive DNS Analysis”, Network and Distributed System Security Sym-
posium, 2011, 7 pages.

Brin, S. and Page, L., “The Anatomy of a Large-Scale Hypertextual
Web Search Engine”, Computer Networks and ISDN Systems, vol.
30, Apr. 1998, pp. 107-117.

Chau, H. D. et al., “Polonium: Tera-Scale Graph Mining and Infer-
ence for Malware Detection”, Conference on Knowledge Discovery
and Data Mining, Jul. 25, 2010, 8 pages.

Collins, M. P. and Reiter, M. K., “Hit-List Worm Detection and Bot
Identification in Large Networks Using Protocol Graphs”, Proceed-
ings of the 10th international conference on Recent advances in
intrusion detection, 2007, pp. 276-295.

Freeman, W. T. et al., “Learning Low-Level Vision”, International
Journal of Computer Vision. vol. 40, Issue 1, 2000. pp. 25-47.
Freiling, F. C. et al., “Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent Distributed Denial-of-Service Attacks”,
Proceedings of the 10th European conference on Research in Com-
puter Security, 2005, pp. 319-335.

Frey, B. J. et al., “A Revolution: Belief Propagation in Graphs With
Cycles,” In Advances in Neural Information Processing Systems,
Dec. 1997, 7 pages.

Gu, G. et al., “BotHunter: Detecting Malware Infection Through
IDS-Driven Dialog Correlation”, Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, Article No.
12,2007, 16 pages.

Gu, G. et al., “BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic”, Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium, Feb. 2008, 19
pages.

“Internet Security Threat Report”, 2011 Trends, vol. 17, Apr. 2012,
pp. 1-52.

Jiang, N. et al., “Identifying Suspicious Activities through DNS
Failure Graph Analysis”, IEEE International Conference on Network
Protocols (ICNP), Oct. 5-6, 2010, pp. 144-153.

Kang, U. et al., “Inference of Beliefs on Billion-Scale Graphs”, The
2nd Workshop on Large-scale Data Mining: Theory and Applica-
tions, Jul. 25, 2010, 7 pages.

Ma, J. et al., “Beyond Blacklists: Learning to Detect Malicious Web
Sites from Suspicious URLs”, Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2009, pp. 1245-1254.

Manadhata, P. K. et al., “Detecting Malicious Domains via Graph
Inference”, Computer Security, Lecture Notes in Computer Science,
vol. 8712, 2014, pp. 1-18.

McAfee TrustedSource, accessed at http://www.trustedsource.org,
accessed on Dec. 17,2014, 1 page.

McEliece, R. J. et al., “Turbo Decoding as an Instance of Pearl’s
“Belief Propagation” Algorithm”, IEEE Journal on Selected Areas in
Communications, vol. 16, Issue 2, Feb. 1998, pp. 140-152.
McGrath, D. K and Gupta, M., “Behind phishing: an examination of
phisher modi operandi”, Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, Article No. 4, Apr. 2008,
8 pages.

McPherson, M. et al., “Birds of a Feather: Homophily in Social
Networks”, Annual Review of Sociology, vol. 27, Aug. 2001. pp.
415-444.

Mills, E., “Malware delivered by Yahoo, Fox, Google ads”, Mar. 22,
2010, accessed at http://news.cnet.com/8301-27080_3-20000898-
245 html, accessed on Dec. 17, 2014, 4 pages.

Murphy, K. P. et al., “Loopy belief propagation for approximate
inference: an empirical study”, Proceedings of the Fifteenth confer-
ence on Uncertainty in artificial intelligence, 1999, pp. 467-475.
Nagaraja, S. et al., “BotGrep: Finding P2P Bots with Structured
Graph Analysis”, Proceedings of the 19th USENIX conference on
Security, 2010, 16 pages.

Pandit, S. et al., “Netprobe: a fast and scalable system for fraud
detection in online auction networks”, Proceedings of the 16th inter-
national conference on World Wide Web, May 8-12, 2007. pp. 201-
210.

Pearl, J., “Reverend bayes on inference engines: A distributed hier-
archical approach”, Proceedings of the National Conference on Arti-
ficial Intelligence, 1982, pp. 133-136.

Provos, N. et al., “All your iFRAMESs point to Us”, Proceedings of the
17th conference on Security symposium, 2008, pp. 1-15.

Rajab, M. A., “A multifaceted approach to understanding the botnet
phenomenon”, Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, 2006, pp. 41-52.

Robtex, “Robtex Swiss Army Knife Internet Tool”, accessed at http://
www.robtex.com, accessed on Dec. 17, 2014, 6 pages.

Stringhini, G. et al.,, “Botmagnifier: Locating Spambots on the
Internet”, USENIX Security Symposium, 2011, 16 pages.

Thomas, K. et al., “Design and Evaluation of a Real-Time URL Spam
Filtering Service”, IEEE Symposium on Security and Privacy, May
22-25,2011. pp. 447-462.

Venkataraman, S. et al., “Exploiting Network Structure for Proactive
Spam Mitigation”, 16th USENIX Security Symposium, May 22,
2007, pp. 149-166.

Weimer, F., “Passive DNS Replication”, Proceedings of FIRST Con-
ference on Computer Security Incident Handling, Apr. 2005, 13
pages.

WOT: Web of Trust, “Know which websites to trust”, accessed at
http://mywot.com, accessed on Dec. 17, 2014, 1 page.

Xie, Y. et al., “Spamming Botnets: Signatures and Characteristics”,
SIGCOMM, 2008, pp. 171-182.

Yadav, S. and Reddy, A.L. N., “Winning with DNS Failures: Strate-
gies for Faster Botnet Detection”, Security and Privacy in Commu-
nication Networks, Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, vol.
96, 2012, 10 pages.

Yadav, S. et al., “Detecting Algorithmically Generated Malicious
Domain Names”, Proceedings of the 10th ACM SIGCOMM confer-
ence on Internet measurement, 2010, pp. 48-61.

Yedidia, J. S. et al., “Understanding belief propagation and its gen-
eralizations”, Exploring artificial intelligence in the new millennium,
2003, pp. 236-239.

Zdrnja, B. et al., “Passive Monitoring of DNS Anomalies”, Proceed-
ings of the 4th international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, 2007. pp. 129-139.
Zhag,Y.etal., “Cantina: a content-based approach to detecting phish-
ing web sites”, Proceedings of the 16th international conference on
World Wide Web, 2007, pp. 639-648.

Zhang, J. et al., “Highly predictive blacklisting”,Proceedings of the
17th conference on Security symposium, 2008, pp. 107-122.
Guava: Google Core Libraries for Java 1.6+, Retrieved from the
Internet: <https://code.google.com/p/guava-libraries™> [retrieved on
Dec. 22, 2014], 2 pages.

* cited by examiner

US 9,124,621 B2

Sheet 1 of 6

Sep. 1, 2015

U.S. Patent

€Gl
NIVINOQ

251

¥ql

NIVINOAQ

061 MNIT
SNOILVYOINNNINOD

NIVYINOAd

161
NIVINOd

L "Old

i1

ddda 08T YNIT
O%T 301A3A SNOILYDINNWINOD
HOLINOW
OLT W3LSAS L
NOILVZILIOIdd x4
L3V ALIINO3S LSOH

[5x4}
1SOH

ot
JOLINOW
ALIINO3S

U.S. Patent Sep. 1, 2015 Sheet 2 of 6

200
N

/210

IDENTIFY THE HOST AND
DOMAIN OF A SECURITY
ALERT

7 220

ACCESS SECURITY STATE
ASSOCIATED WITH HOST

7 230

ACCESS SECURITY STATE
ASSOCIATED WITH DOMAIN

/ 240

COMPUTE PRIORITY OF
SECURITY ALERT BASED ON
SECURITY STATES

FIG. 2

US 9,124,621 B2

US 9,124,621 B2

Sheet 3 of 6

Sep. 1, 2015

U.S. Patent

€ 9Old
13TV ALIMNO3S 0% I1NAOW
m a3zZILIYoIdd U < ALMOId [
z0c”
A |
|
p _ \Js«zmmul.mq
I/ woison
(Iy MIAN
) “ >|.uwmﬁwﬁmm\
r/. 06¢
29¢ h
S3LVIS —
ALIYINO3S —> ommw_,_mm._mmﬁ_%___,_ il
IVILINI i
0.8” (3

0€€ 31NACK
NOILVOIdILNIAI

|8€

oomu\\\\

.

ot

ony

.t

ony

01¢
YOLVHANID
HdVYD

R<EN\
ALIINO3S

US 9,124,621 B2

Sheet 4 of 6

Sep. 1, 2015

U.S. Patent

G Old
ova O¢H
oLa O¢H
ova O¢H
0ca O¢H
0cd OlH
oLa OlH
SNIVINOQ S1SOH

oom\\\

U.S. Patent Sep. 1, 2015 Sheet 5 of 6 US 9,124,621 B2

600
N

FOR EACH SECURITY ALERT

/610

DETERMINE HOST AND
DOMAIN ASSOCIATED WITH
SECURITY ALERT

l 7 620

ADD REFERENCES FOR HOST
AND DOMAIN TO HOST-
DOMAIN ACCESS MAP

l 7 630

DETERMINE CONFIDENCE
MEASURE OF SECURITY
ALERT

l 7 640

COMPUTE INITIAL SECURITY
STATES OF HOST AND
DOMAINS IN HOST-DOMAIN
ACCESS MAP BASED ON
CONFIDENCE MEASURE

* /650

APPLY BELIEF PROPAGATION
TO HOST-DOMAIN ACCESS
GRAPH TO ASSIGN SECURITY
STATE FOR EACH NODE IN
HOST-DOMAIN ACCESS MAP

FIG. 6

U.S. Patent

Sep. 1, 2015 Sheet 6 of 6 US 9,124,621 B2
/r700
COMPUTING SYSTEM
Ve 730
MEMORY
210 OPERATING IDENTIFICATION
ya SYSTEM 731 MODULE 735
PROCESSOR 739\‘
PRIORITY
C MODULE 736
J
J
/,720 REPORTING
MODULE 737

COMMUNICATIONS

INTERFACE

FIG. 7

US 9,124,621 B2

1
SECURITY ALERT PRIORITIZATION

BACKGROUND

Systems that monitor network traffic for an organization
typically compare network traffic such as data packets or
groups of data packets with a group of rules to determine
whether that network traffic is suspicious or potentially mali-
cious. If the network traffic satisfies or matches one or more
rules, a security alert is generated by the system. Typically,
the security alert is then provided to a security monitor for the
organization.

Because distinguishing malicious from benign network
traffic can be difficult, the rules are often designed to be
broadly inclusive. As a result, many security alerts provided
to a security monitor are false positives. Organizations often
expend significant resources and effort to manually identify
true positives in the security alerts provided to a security
monitor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is schematic block diagram of an environment
including a security alert prioritization system, according to
an implementation.

FIG. 2 is a flowchart of a process to prioritize security
alerts, according to an implementation.

FIG. 3 is an illustration of operation of a security alert
prioritization system, according to an implementation.

FIG. 4 is an illustration of a representation of a host-
domain access map, according to an implementation.

FIG. 5 is an illustration of a representation of a host-
domain access map, according to another implementation.

FIG. 6 is a flowchart of a process to generate a host-domain
access map including security states for hosts and domains,
according to an implementation.

FIG. 7 is a schematic block diagram of a security alert
prioritization system hosted at a computing system, accord-
ing to an implementation.

DETAILED DESCRIPTION

Identifying which security alerts are true positives or, con-
versely, identifying which security alerts are false positives
can be a resource-intensive task for many organizations.
Indeed, some organizations have inadequate resources to
review or investigate the security alerts generated by intrusion
detection systems of that organization. Furthermore, security
alerts generated by intrusion detection systems are not typi-
cally prioritized to suggest which security alerts are most
likely to identify security issues that are most (or more rela-
tive to others) significant. Thus, an organization is rarely
provided with guidance regarding which security alerts
should be reviewed or investigated. As a result, statistical data
generated from the security alerts used to identify and char-
acterize security issues, threats, or trends for an organization
can be inaccurate.

Implementations discussed herein prioritize security alerts
based on information inferred about the security state ofhosts
and domains from known or assumed initial security state for
some hosts and domains. For example, an intrusion detection
system can provide a security alert and an associated priority
to a security monitor. As another example, a security monitor
can prioritize security alerts using methods and systems dis-
cussed herein. Moreover, some implementations discussed
herein provide environment- (or organization- or entity- or
system-) specific priorities for security alerts based on com-

10

15

20

25

30

35

40

45

50

55

60

65

2

munication between hosts within the environment and vari-
ous domains. In some implementations, information is
inferred about the security state of hosts and domains using
belief propagation.

As an example, a security alert prioritization system gen-
erates a host-domain access map which describes network
activity between hosts and domains. The host-domain access
map can be represented as a graph in which hosts within an
organization (e.g., an enterprise) and domains accessed by
those hosts are represented by nodes, and edges connect
nodes representing hosts to nodes represented domains
accessed by those hosts. Generically, a portion of a host-
domain access map at which information related to a host or
a domain is stored can be referred to as a node of the host-
domain access map. As a specific example, the host-domain
access map can be generated from network activity records
such as Dynamic Name System (DNS) and/or web proxy
logs. In other words, the security alert prioritization system
can parse network activity records to identify which hosts
communicate with which domains, and generate or construct
a host-domain access map based on this information.

The security alert prioritization system seeds the graph
with initial security states (or ground truth information) for a
small fraction of nodes. More specifically, for example, the
security alert prioritization system labels a small fraction of
nodes as malicious and benign, and the rest of the nodes are
labeled as unknown (i.e., no information about the security
state of those nodes is available or known). Such ground truth
information can be accessed at, for example, DNS blacklists
and whitelists. The security alert prioritization system then
applies belief propagation to the host-domain access graph to
estimate the nodes’ marginal probabilities of being malicious.
That is, each node’s security state is determined based on the
initial security states of the nodes labeled malicious or
benign.

After a security alert is generated by, for example, an
intrusion detection system, and received at the security alert
prioritization system, the security alert prioritization system
identifies a host and a domain associated with the security
alert (e.g., the host and the domain between which network
activity triggered the security alert) and accesses the security
states of the host and the domain at the host-domain access
map. The security alert prioritization system then determines
a priority for the security alert based on the security states of
the host and the domain. For example, the security alert
prioritization system computes (or calculates) a priority for
the security alert based on the security states of the host and
the domain between which network activity triggered the
security alert.

FIG. 1 is schematic block diagram of an environment
including a security alert prioritization system, according to
an implementation. The environment illustrated in FIG. 1
includes security alert prioritization system 110, hosts 121-
124, security monitor 130, monitor device 140, domains 151-
154, and communications links 180 and 190. Connections
among the various components illustrated in FIG. 1 are logi-
cal, and do not necessarily represent physical connections.

Hosts 121-124 are entities such as computing systems or
virtual machines that access domains 151-154. In some
implementations, a host can be represented or identified by a
host name, an Internet Protocol (IP) address, a Media Access
Control (MAC) address, or some other identifier. Domains
151-154 are resources that are accessible via one or more
communications links. In some implementations, a domain
can be represented or identified by a Uniform Resource Iden-
tifier (URI) such as a Uniform Resource Locator (URL) or by
an IP address. As an example, a host can be a computing

US 9,124,621 B2

3

system hosting an Internet browser and domain 151 can be a
web site accessed at a URL by the Internet browser.

As illustrated in FIG. 1, hosts 121-124 are coupled to
communications link 180 located on one side (or segment) of
monitor device 140, and domains are 151-154 are coupled to
communications link 190 located on a different side (or seg-
ment) of monitor device 140. In some implementations, some
or all of domains 151-154 can be coupled to communications
link 180. That is, at least some of domains 151-154 can be on
the same side of monitor device 140 as hosts 121-124.

Monitor device 140 is an entity such as a computing system
or virtual machine through which network traffic between
hosts 121-124 and domains 151-154 is routed. As illustrated
in FIG. 1, monitor device 140 is logically located between
communications links 180 and 190. In some implementa-
tions, monitor device can operate within a single communi-
cations link, and network traffic between hosts and domains
can be routed through or to (e.g., mirrored to) monitor device
140.

Intrusion detection system (labeled “IDS”) 141 analyzes
that network traffic (e.g., data packets via which hosts 121-
124 access hosts 151-154) to determine whether that network
traffic may be malicious, and generates (or raises) security
alerts based on that analysis. For example, monitor device
140 can be a server hosting IDS 141. That is, IDS 141 can be
implemented as software hosted at monitor device 140. As
another example, monitor device 140 can be a network appli-
ance at which IDS 141 is implemented as logic within one or
more integrated circuits (or hardware), software hosted at a
processor, or as a combination thereof.

Asusedherein, an “intrusion detection system” is amodule
or group of modules that analyzes network traffic and raises
security alerts if that network traffic is determined to be or to
potentially be malicious. As such, the term “intrusion detec-
tion system” refers to typical intrusion detection systems,
intrusion prevention systems, and similar systems. Also, as
used herein, a “security alert” is an indication that some
network traffic such as a data packet, a group of data packets,
or a network stream has been determined to be or to poten-
tially be malicious (or to be suspicious). For example, a
security alert can be a data set including an identifier of a host,
an identifier of a destination, and an identifier or description
of'a basis of the security alert (e.g., an identifier of a rule that
was satisfied to trigger the security alert). Such a security alert
can be raised (e.g., generated and sent via a communications
interface) at an intrusion detection system if a data packet
matches (or satisfies) a rule at the intrusion detection system.

Communications links 180 and 190 each include devices,
services, or combinations thereofthat define communications
paths between hosts, domains, and/or other devices or ser-
vices. For example, communications links 180 and 190 can
each include one or more of a cable (e.g., twisted-pair cable,
coaxial cable, or fiber optic cable), a wireless link (e.g., radio-
frequency link, optical link, or sonic link), or any other con-
nectors or systems that transmit or support transmission of
signals. Moreover, communications links 180 and 190 can
each include communications networks such as a switch fab-
ric, an intranet, the Internet, other telecommunications net-
works, or a combination thereof. Additionally, communica-
tions links 180 and 190 can each include proxies, routers,
switches, gateways, bridges, load balancers, and similar com-
munications devices.

Security monitor 130 receives security alerts from monitor
device 140 (or IDS 141). For example, security monitor 130
can be an application hosted at a computing system that
includes a graphical user interface (GUI) at which a user such
as a system administrator can view or access security alerts. In

30

40

45

50

55

4

some implementations, security monitor 130 includes or
communicates with a data store such as a database, filesys-
tem, or storage device such as a hard disk drive (HDD) or
solid-state drive (SSD) at which security alerts raised at moni-
tor device 140 (or IDS 141) are stored.

Security alert prioritization system 110 prioritizes security
alerts based on a host and a domain associated with those
security alerts. Security alert prioritization system 110 can be,
for example, a standalone application hosted at a computing
system or an appliance as illustrated in FIG. 1, can be part of
an intrusion detection system, or can be part of a security
monitor. As discussed above, a security alert is raised when
network traffic (e.g., a data packet, a group of data packets, or
a data stream) matches a rule or trigger. Network traffic is
associated with a host and a domain. That is, a host is a source
or destination of the network traffic and a domain is a desti-
nation or source, respectively, of the network traffic. Thus, a
security alert raised in response to some network traffic can be
said to be associated with the host and the domain of that
network traffic.

Security alert prioritization system 110 prioritizes security
alerts. For example, FIG. 2 is a flowchart of a process to
prioritize security alerts, according to an implementation. As
illustrated in FIG. 2, a security alert prioritization system
identifies or determines the host and the domain associated
with a security alert at block 210. For example, a security alert
can include an IP address or a MAC address of a host and a
URL representing a domain. As another example, a security
alert can include an IP address of a host and a URL represent-
ing a domain, and the security alert prioritization system can
parse IP address lease information (e.g., Dynamic Host Con-
figuration Protocol (DHCP) logs) to identify a MAC address
or host name of the host.

At block 220, the security alert prioritization system
accesses a security state of the host. As used herein, a “secu-
rity state” is a value or group of values that represent a secu-
rity risk. For example, a security state can be a value that
represents a probability that a host or a domain is a severe
security risk (or malicious). As amore specific example, ifthe
security state can have a value between 0 and 1.0. If the
security state is 0.9, the host or the domain associated with the
security state is likely to be severe (e.g., to pose a significant
or high security risk or be malicious). If the security state is
0.1, the host or the domain associated with the security state
is likely to be low (e.g., to pose a low security risk or be
benign). As another example, a security state can be a binary
value of “severe” or “benign.”

As yet another example, a security state can be a multiclass
classification vector. A multiclass classification vector is a
group of values, each of which represents a likelihood or
probability that a host or a domain is associated with a par-
ticular class of security risk. More specifically, for example, a
multiclass classification vector can include four values: one
value representing the probability that an associated host or
domain poses a low (or benign) security risk, one value rep-
resenting the probability that an associated host or domain
poses a moderate security risk, one value representing the
probability that an associated host or domain poses a high
security risk, and one value representing the probability that
an associated host or domain poses a severe security risk.

As discussed in more detail herein, security states can be
derived using belief propagation based on initial security
states assigned to a small number of hosts and/or domains.
The security state of the host accessed at block 220 can be
accessed at a portion of a table within a memory, a portion of
a database, or a particular memory address associated with
the host. As a specific example, an identifier of the host such

US 9,124,621 B2

5

asa MAC address or host name (or a hash thereof) can be used
as a key to access (e.g., lookup) the security state of or asso-
ciated with the host. Similarly, a security state of the domain
is accessed at block 230.

The security alert prioritization system then computes a
priority for the security alert based on the security state of the
host and the security state of the domain at block 240. In other
words, the security alert prioritization system can determine a
priority for the security alert based on the security state of the
host and the security state of the domain. The priority can be
computed or determined using a variety of methodologies.
For example, if the security states are binary values, of
“severe” or “benign,” the priority can be “high” if both secu-
rity states are “severe,” “moderate” if one security state is
“severe” and the other security state is “benign,” and “low” if
both security states are “benign.” As another example, if the
security states are binary values, of “severe” or “benign,” the
priority can be “high” if the security state of the domain is
“severe,” “moderate” if the security state of the host is
“severe” and the other security state of the domain “benign,”
and “low” if both security states are “benign.” As yet another
example, if the security states are multiclass classification
vectors, the security states can be combined to determine a
probability representing the joint probability of each class
represented in the security states, and the priority can be
determined based on the probability for that class.

In some implementations, as discussed above, a priority is
a class such as “high,” “moderate,” or “low.” In other imple-
mentations, a priority can be a number, for example, between
Oand 1.0, between 1 and 10, or between 1 and 100. As another
example, a priority can be a color along a spectrum that
indicates the severity or security risk associated with the
priority. As another example, a priority can be multiclass
classification vector to indicate a probability for each class of
a group of classes. More specifically, for example, a priority
can include three values that represent the probabilities that a
security alert is a high security risk, a moderate security risk,
and a low security risk.

Such priorities can reduce the burden on an organization of
reviewing false positives. For example, a security alert raised
in response to network traffic between a host and a domain
that each have security states indicating a low security risk
can be assigned a low priority and assumed to be a false
positive. Similarly, a security alert raised in response to net-
work traffic between a host and a domain that each have
security states indicating a high or severe security risk can be
assigned a high priority, and review and/or investigated.

Process 200 illustrated in FIG. 2 is an example process to
prioritize security alerts. Other implementations can include
additional and/or rearranged blocks or steps. For example, in
some implementations, if a host or domain is unknown, a
security alert prioritization system can access a default secu-
rity state for that host of domain. More specifically, a host or
domain can be unknown if the security alert prioritization
system does not have or is unable to access a security state for
that host or domain. The default security state can be a pre-
determined value. For example, the default security state can
be “severe,” or can be “benign.” As another example, the
default security state can be a multiclass classification vector
in which the probabilities for each class are equal. In some
implementations, the default security state can be applied to a
node added to a host-domain access map (and representing
the previously unknown host or domain) to which belief
propagation is applied, and the security state can be accessed
after the belief propagation is applied to the host-domain
access map.

40

45

55

6

FIG. 3 is an illustration of operation of a security alert
prioritization system, according to an implementation. Secu-
rity alert prioritization system 300 includes graph generator
(or graph generator module) 310, inference module 320,
identification module 330, and priority module 340. Although
these particular modules (i.e., combinations of hardware and
software) and various other modules are illustrated and dis-
cussed in relation to FIG. 3 and other example implementa-
tions, other combinations or sub-combinations of modules
can be included within other implementations. Said differ-
ently, although the modules illustrated in FIG. 3 and dis-
cussed in other example implementations perform specific
functionalities in the examples discussed herein, these and
other functionalities can be accomplished, implemented, or
realized at different modules or at combinations of modules.
For example, two or more modules illustrated and/or dis-
cussed as separate can be combined into a module that per-
forms the functionalities discussed in relation to the two
modules. As another example, functionalities performed at
one module as discussed in relation to these examples can be
performed at a different module or different modules.

Graph generator 310 accesses network activity records 350
to generate host-domain access map 361. Network activity
records describe and/or record network traffic between hosts
and domains. For example, network activity records can be
included in network proxy log files, Dynamic Name System
(DNS) log files, security alerts, web server logs, and/or one or
more data stores that record accesses or requests for access
between hosts and domains.

A host-domain access map is a data structure that describes
which hosts have exchanged network traffic with (or
accessed) which domains. As examples of host-domain
access maps, FIG. 4 is an illustration of a representation of a
host-domain access map, according to an implementation,
and FIG. 5 is an illustration of a representation of a host-
domain access map, according to another implementation.
Host-domain access map 400 in FIG. 4 is represented as a
graph. The graph includes nodes H10, H20, and H30 repre-
senting hosts; nodes D10, D20, D30, and D40 represented
domains; and edges E11, E13, E22, E24, E31, and E34 rep-
resenting accesses between those nodes.

More specifically, edge E11 indicates that a host associated
with node H10 exchanged are attempted to exchange network
traffic with a domain associated with node D10; edge E13
indicates that a host associated with node H10 exchanged are
attempted to exchange network traffic with a domain associ-
ated with node D30; edge E22 indicates that a host associated
with node H20 exchanged are attempted to exchange network
traffic with a domain associated with node D20; edge E24
indicates that a host associated with node H20 exchanged are
attempted to exchange network traffic with a domain associ-
ated with node D40; edge E31 indicates that a host associated
with node H30 exchanged are attempted to exchange network
traffic with a domain associated with node D10; and edge E34
indicates that a host associated with node H30 exchanged or
attempted to exchange network traffic with a domain associ-
ated with node D40. Each node can include a security state for
the host or domain associated with that node. For example,
the nodes illustrated with dashed lines (i.e., nodes H10, D20,
and D30) can have a malicious or severe security state, and the
nodes illustrated with solid lines (i.e., nodes H20, H30, D10,
and D40) can have a benign security state.

Although illustrated graphically in FIG. 4, a graph can be
stored within a memory of a computing system, where each
node occupies a number of memory locations at which data
representing the security state, an identifier of the host of
domain associated with that node, and a group of memory

US 9,124,621 B2

7

location addresses (or pointers) representing edges to other
nodes. Host-domain access map 500 in FIG. 5 is represented
as a table, in which each row represents access between the
host and domain represented in the columns of that row.

For example, the first row includes information related to
host H10 (e.g., an identifier and security state “M” for mali-
cious of host H10) in the “HOSTS” column and information
related to domain D10 (e.g., an identifier and security state
“B” for benign of domain D10). Because host H10 and
domain D10 are represented on a common row of the table,
host H10 and domain D10 have exchanged or attempted to
exchange network traffic. In other words, there has been an
access between host H10 and domain D10. Similar to the
graph illustrated in FIG. 4, the table illustrated in FIG. 5 can
be stored at a memory with acomputing system. For example,
the table can be stored as a two-dimensional array or vector
within a memory.

Referring to FIG. 3, graph generator 310 generates host-
domainaccess map 361 from network activity records 350 by,
for example, parsing network activity records 350 to identify
which hosts communicate with which domains. As illustrated
in FIG. 3, host-domain access map 361 is a graph in which
hosts and domains are illustrated as nodes, and each edge
indicates that a host and a domain associated with the nodes
connected to that edge exchanged data. That is, an edge
connecting two nodes represents one or more accesses
between the host and the domain associated with those nodes
(i.e., that the host accessed the domain or that the domain
accessed the host).

Graph generator 310 can generate host-domain access map
361 using a variety of methodologies and information
included within network activity records 350. For example,
graph generator 310 can add nodes to a graph or entries to
rows of a table when an entry within network activity records
350 includes a reference to or identifier of a host or domain
that is not already included in host-domain access map 361.
Additionally, graph generator 310 can add an edge to a graph
or entries to rows of a table when an entry within network
activity records 350 indicates access between a host and a
domain.

As a specific example, network activity records 350 can
include records of DNS requests, and graph generator 310 can
modify host-domain access map 361 to represent an access
between a host and a domain for each DNS request. As
another example, network activity records 350 can include
records of security alerts raised by an intrusion detection
system, and graph generator 310 can modify host-domain
access map 361 to represent an access between a host and a
domain for each security alert. As yet another example, net-
work activity records 350 can include Hypertext Transfer
Protocol (HTTP) request records, and graph generator 310
can modify host-domain access map 361 to represent an
access between a host and a domain for each HTTP request.
Such modifications can include, for example, adding nodes
and/or edges to a graph.

The circles representing nodes in host-domain access map
361 (edges are represented by lines extending between pairs
of' nodes) are illustrated with dotted lines to indicate than no
security state is currently associated with the hosts and the
domains associated with those nodes. In other words, host-
domain access map 361 does not include security state infor-
mation for the hosts or the domains represented in host-
domain access map 361. Inference module 320 accesses host-
domain access map 361 and initial security states 370 to
define security states for host-domain access map 361, result-
ing in host-domain access map 362. Host-domain access map
362 can be a new host-domain access map or host-domain

10

15

20

25

30

35

40

45

50

55

60

65

8

access map 361 in which nodes representing hosts and
domains are associated with (e.g., annotated to identify) secu-
rity states of those hosts and domains.

Initial security states 370 includes information about the
security states of a small subset of the hosts and the domains
represented in host-domain access map 361. For example, in
some implementations, initial security states 370 includes
information related to the security states of less than 15%, less
than 10%, or less than 5% of the hosts and the domains. Initial
security states 370 can include, for example, a white list of
hosts and domains that are assumed to be benign (or secure)
and/or a black list of hosts and domains that are assumed to be
malicious (or insecure or compromised). In other implemen-
tations, initial security states 370 can include multiclass clas-
sification vectors associated with hosts and/or domains rep-
resented in host-domain access map 361.

Inference module 320 uses initial security states 370 to
define security states of each host and domain in host-domain
access map 361 to produce host-domain access map 362.
Host-domain access map 362 includes nodes that are illus-
trated with dashed and solid lines. The nodes with dashed
lines are associated with hosts and domains that have mali-
cious (or severe) security states. The nodes with solid lines are
associated with hosts and domains that have benign security
states. As discussed above, in other implementations, a secu-
rity state can be represented by multiclass classification vec-
tors or other values other than binary “benign” or “severe”
values.

As a specific example, inference module 320 can apply
belief propagation to host-domain access map 361 to define a
security state for each host and domain represented in host-
domain access map 361. In this example, reference will be
made to host-domain access map 361 as a graph. The meth-
odologies discussed herein are also applicable to other rep-
resentations of host-domain access graphs such as tables.

Inference module 320 uses initial security states 370 to
establish ground truth to define a security state for each host
and domain in host-domain access map 361. In other words,
initial security states 370 can be ground truth or seed data for
belief propagation using the access information represented
by host-domain access map 361. Inference module 320 can
assign initial security states from initial security states 370 to
nodes (or hosts and domains represented by the nodes) in
host-domain access map 361 for which initial security states
370 include initial security states. Similarly, inference mod-
ule 320 can assign unknown security states to nodes in host-
domain access map 361 for which initial security states 370
do not include initial security states.

For example, the unknown security states of such nodes
can be neither a “benign” nor a “severe” initial security state.
As another example, the unknown security states of such
nodes can be a multiclass classification vector in which each
class is assigned an equal probability. As yet another example,
the unknown security states of such nodes can be a multiclass
classification vector in which each class is assigned a prede-
termined probability.

Typically, there are many more (e.g., multiple times as
many) nodes (or hosts and domains represented by the nodes)
with unknown security states than nodes with initial security
states. Thus, security states can be determined or defined for
many hosts and domains using a relatively small amount of
ground truth related to the security risks of hosts and domains
represented in host-domain access map 361.

After initial security states and unknown security states are
assigned to the nodes of host-domain access map 361, infer-
ence module 320 applies iterations of belief propagation to
host-domain access map 361 until the iterations converge.

US 9,124,621 B2

9

That is, inference module 320 applies iterations of belief
propagation to host-domain access map 361 until the itera-
tions of belief propagation do not change the security states of
the nodes significantly (i.e., more than a predetermined
amount).

Each iteration of belief propagation involves exchanging
messages between nodes (representing hosts and domains) of
host-domain access map 361 between which host-domain
access map 361 indicates an access. In other words, in each
iteration messages are exchanged between nodes represent-
ing hosts and domains that have exchanged network traffic
(e.g., data). More specifically, for each host and domain that
have exchanged network traffic, the node representing the
host sends a message to the node representing the domain,
and the node representing the domain sends a message to the
node representing the host. Referring to the graph represen-
tation of host-domain access map 362 illustrated in the FIG. 3,
the messages are exchanged along edges connecting nodes.
The messages indicates a believed security state (e.g., prob-
ability or probabilities for multiclass classification vectors of
a security state) that the originator node of the message deter-
mines for the destination node of the message. The originator
node determines this believed security state based on its own
current security state, and a weight function between itself
and the destination node.

The weight function can be, for example, an edge potential
function such as an edge potential matrix that describes
weights to be applied to a security state of an originator node
based on the security state of the originator node and the
security state of a destination node. As a specific example, if
the security state is a probability (e.g., number between 0 and
1.0) that a node is malicious, the weight function can be an
edge potential matrix of two rows and two columns having
four values. The security state of the originator node can be
modified (e.g., multiplied) by a first value from the edge
potential matrix to define the believed security if the security
state of the originator node is benign (e.g., less than 0.5) and
the security state of the destination node is benign; by a
second value from the edge potential matrix to define the
believed security if the security state of the originator node is
malicious (e.g., greater than or equal to 0.5) and the security
state of the destination node is malicious; by a third value
from the edge potential matrix to define the believed security
if the security state of the originator node is benign and the
security state of the destination node is malicious; or by a
fourth value from the edge potential matrix to define the
believed security if the security state of the originator node is
malicious and the security state of the destination node is
benign.

In other implementations, the weight function can be some
other edge potential function based on the security state of an
originator node and a destination node for a message. The
value of the weight function for those nodes is used to modify
the security state of the originator node to determine a
believed security state for the destination node, which is
included in the message provided to the destination node. The
believed security state (e.g., the security state of the originator
node as modified by the value of the weight function) is the
originator node’s belief of the security state of the destination
node. After receiving the message, the destination node modi-
fies its own security state based on its current security state
and the believed security state included in the message. As
discussed above, a security state can also be other values or
groups of values such as multiclass classification vectors.
When believed security states included in the messages con-
verge to (e.g., do not significantly differ from) the current

20

30

40

45

50

10

security states of the destination nodes, the belief propagation
can be said to have converged.

Applying belief propagation to host-domain access map
361 to define host-domain access map 362 can be particularly
beneficial over other techniques such as marginal probability
calculation because belief propagation is less computation-
ally intensive. Also, belief propagation can converge to accu-
rate security states for all nodes in host-domain access map
361 using little ground truth (i.e., with only a small number of
nodes having initial security states in comparison to the num-
ber of nodes having unknown security states).

Moreover, the methods and systems discussed herein can
accurately assign priorities to security alerts because the
security states associated with hosts and domains in a host-
domain access map are specific to a particular organization
operating a security alert prioritization system. That is, the
host-domain access map is generated from network activity
records of the organization and is, therefore, specific or par-
ticular to the organization (i.e., the host-domain access map
describes accesses between hosts of the organization and
domains). Thus, the belief propagation applied to the host-
domain access map derives security states for all the hosts and
domains represented in the host-domain access map from the
initial security states according to the structure of the host-
domain access map, which is specific to the organization.

As an example of generating a host-domain access map
with security states associated with hosts and domains repre-
sented in the host-domain access map, FIG. 6 is a flowchart of
a process to generate a host-domain access map including
security states for hosts and domains, according to an imple-
mentation. In this example, with reference to FIG. 3, network
activity records 350 include security alerts generated at an
intrusion detection system, and blocks 610, 620, 630, and 640
are repeated for each security alert.

At block 610, the host and domain associated with a secu-
rity alert. For example, graph generator 310 can parse the
security alert to identify identifiers of the host and the domain
associated with the security alert (e.g., between which net-
work traffic matched a rule to trigger the security alert). At
block 620, references to the host and the domain (e.g., nodes
in a graph or rows in a table including the identifiers of the
host and the domain) are then added to a host-domain access
map at block 620. In some implementations, such as imple-
mentations in which the host-domain access map is repre-
sented as a graph, the host-domain access map is modified to
indicate access between the host and the domain. More spe-
cifically, for example with reference to a graph, an edge can be
added between nodes representing the host and the domain.

A confidence measure related to (or associated with or of)
the security alert is then determined at block 630. For
example, the security alert can include a confidence measure
within the security alert. As another example, initial security
states 370 can include confidence measures for some rules of
an intrusion detection system, and the security alert can
include an identifier of the rule that was satisfied to trigger
generation of the security alert. Such confidence measures
can be assigned to rules of an intrusion detection system by,
for example, a domain expert based on an analysis of those
rules. Inference module 320, for example, can use the iden-
tifier of the security rule to select a confidence measure from
initial security states 370 that is related to the security alert. If
a confidence measure is not available or accessible for a
security alert, process 600 can return to block 610 to handle
another security alert. In other words, no initial security state
will be determined for the host and the destination for a
security alert with no associated (or related) confidence mea-
sure.

US 9,124,621 B2

11

A confidence measure is a value (or group of values) that
indicates a confidence in a rule that triggers a security alert.
For example, a rule that results in few false positive security
alerts (i.e., security alerts that indicate malicious network
activity raised in response to network activity that is benign)
can have a high confidence measure (i.e., high confidence is
given to that rule). A rule that frequently results in false
positive security alerts can have a low confidence measure
(i.e., low confidence is given to that rule). Security alerts
raised by a rule with a confidence measure can be said to be
related to (or associated with) that confidence measure. Thus,
security alerts associated with a high confidence measure can
be assumed to be triggered by malicious network activity.
Accordingly, the host and the domain associated with that
security alert can be assigned an initial security state indicat-
ing a relatively high probability that the host and the domain
are malicious.

At block 640, the confidence measure is used to compute
initial security states for the host and the domain. These initial
security states are then assigned to the host and the domain.
For example, the initial security states of the host and the
domain can be determined (or computed) to be malicious if
any confidence measure is related to the security alert (e.g., is
associated with the rule that was matched to trigger the secu-
rity alert). In other implementations, the initial security states
of'the host and the domain can be computed based on a value
or values of the confidence measure. For example, values can
be assigned to a multiclass classification vector based on a
value of a confidence measure. More specifically, for
example, values for classes of a multiclass classification vec-
tor that represent severe and high security risks can be indi-
cate high probabilities and values for classes of the multiclass
classification vector that represent moderate and low security
risks can indicate low probabilities if a confidence measure
has a value representing a high confidence. Said differently,
the initial security states of a host and domain associated with
a security alert are computed or determined to be proportional
or correspond to the confidence measure related to that secu-
rity alert.

In some implementations, an initial security state can have
previously been computed for and assigned to the host and/or
the destination. For example, the host and/or the destination
can have been associated with a previously handled security
alert. Under such conditions, the previously-assigned initial
security state can be modified at block 640. For example, an
initial security state representing a probability that the host or
the domain is malicious can be increased at block 640 if the
confidence measure indicates a high confidence associated
with the security alert (e.g., the rule matched to trigger gen-
eration of the security alert is likely to generate true posi-
tives). As another example, a probability that the host or the
domain is malicious can be decreased at block 640 if the
confidence measure indicates a low confidence associated
with the security alert (e.g., the rule matched to trigger gen-
eration of the security alert is likely to generate false posi-
tives).

After blocks 610, 620, 630, and 640 have been performed
for all the security alerts, process 600 proceeds to block 650.
Atblock 650, belief propagation is applied to the host-domain
access map to determine a security state of each host and
domain represented in the host-domain access map based on
the initial security states determined at block 640. As dis-
cussed above, not every host and domain represented in the
host-domain access map is assigned an initial security state.
Belief propagation is applied at block 650 to determine a
security state of each host and domain represented in the
host-domain access map based on the initial security states

10

15

20

25

30

35

40

45

50

55

60

65

12

for hosts and domains computed during iterations of blocks
610, 620, 630, and 640. Thus, a host-domain access map with
security states associated with hosts and domains represented
in the host-domain access map using security alerts raised by
an intrusion detection system.

Referring again to FIG. 3, after security alert 381 is
received by security alert prioritization system 300, identifi-
cation module 330 determines or identifies a host and a
domain associated with security alert 381. For example, secu-
rity alert 381 can be generated at an intrusion detection sys-
tem (or monitor device) based on network traffic exchanged
between a host and a domain, and can include an identifier of
the host and an identifier of the domain. As a specific
example, security alert 381 can include an IP address of the
host and a URL of the domain. Identification module 330 can
extract the second-level domain of the domain from the URL,
and identity a MAC address of the host by parsing DHCP logs
to determine to which MAC address the IP address is cur-
rently leased. The second-level domain and MAC address can
be used to identify the domain and the host, respectively,
associated with security alert 381. In other implementations,
identification module 330 can determine other identifiers
such as IP addresses, IP address ranges, host names, or other
identifiers for a host and a domain associated with a security
alert.

Identification module 330 then provides the identifiers of
the host and the domain associated with security alert 381 to
priority module 340. In some implementations, identification
module 330 also provides security alert 381 to priority mod-
ule 340. Priority module 340 determines a priority of security
alert 381 using the identifiers of the host and the domain
associated with security alert 381 and security states of the
host and the domain from host-domain access map 362. As
discussed above, a host-domain access map such as host-
domain access map 362 includes identifies of the hosts and
the domains represented within the host-domain access map.
Priority module 340 receives host-domain access map 362
from inference module 320 (or accesses host-domain access
map 362 at a memory at which inference module 320 stored
host-domain access map 362), and identifies nodes of host-
domain access map 362 that match the identifiers of the host
and the domain associated with security alert 381.

Priority module 340 then accesses the security state of
those nodes to determine the security state of the host and the
security state of the domain, and computes or determines a
priority of security alert based on the security state of the host
and the security state of the domain. For example, priority
module 340 can access a lookup table of priorities indexed by
the security states of the host and the domain. As a specific
example, if the security states of the host and the domain are
binary with values of “severe” and “benign,” a high priority
can be determined for security alert 381 if the security state of
the host is severe and the security state of the domain is
severe, a low priority can be determined for security alert 381
if the security state of the host is benign and the security state
of the domain is benign, a moderate priority can be deter-
mined for security alert 381 if the security state of the host is
severe and the security state of the domain is benign, and a
moderate priority can be determined for security alert 381 if
the security state of the host is benign and the security state of
the domain is severe. As another example, the security states
of the host and the domain can be applied to a function to
determine a priority of security alert 381. Such a function or
lookup table can be multidimensional to determine a priority
of security alert 381 if the security states of the host and the
domain are multiclass classification vectors.

US 9,124,621 B2

13

If the host and/or the domain are not included within host-
domain access map 362, the host and/or the domain can be
referred to as unknown. A default security state can be applied
to the host and/or the domain, and the default security state
used as the security state of the host and/or the domain. A
default security state is a predetermined security state for
unknown hosts and domains. For example, a default security
state can include one or more values defining a probability or
probabilities that a host or a domain is either malicious,
benign, or in some other class or classes of security risk.

In some implementations, priority module 340 can provide
information related to an unknown host or domain (e.g., an
identifier of the host or domain and/or a default security state)
to inference module 320. Inference module 320 can then add
the new host or domain to host-domain access map 362, and
determine a security state of the new host or domain. For
example, priority module 340 can provide data (or informa-
tion) for new host or domain 390 to inference module 320.
Inference module 320 can then add the new host or domain to
host-domain access map 362, perform belief propagation to
host-domain access map 362 to determine or define a security
state for the new host or domain, and provide a signal to
priority module 340 to indicate that a security state is avail-
able for the new node or domain. Priority module 340 can
then use that security state to determine a priority for security
alert 381.

As another example, priority module 340 provides infor-
mation for new host or domain 390 to inference module 320,
and uses a default security state for the new host or domain to
determine a priority for security alert 381. Inference module
320 canthen at a later time based on a schedule or some event,
perform belief propagation to host-domain access map 362 to
determine or define security states for any new hosts or
domains for which information is received from priority mod-
ule 340.

As illustrated in FIG. 3, in some implementations, priority
module 340 outputs prioritized security alerts. For example,
priority module 340 can include a reporting module (not
shown) to provide prioritized security alert 382 (e.g., security
alert 381 and a related priority) to a security monitor. A
reporting module communicates with a security monitor or
group of security monitors to provide prioritized security
alerts (e.g., security alerts with associated priorities) to the
security monitor or group of security monitors.

As discussed above, priorities determined by a security
alert prioritization system can be specific or particular to an
organization operating the security alert prioritization system
(or for which the security alert prioritization system is oper-
ated). Such organization- or environment-specific priorities
are a result of the security states determined based on one or
more host-domain access maps that are specific to the orga-
nization (or environment). Moreover, as discussed above in
relation to FIG. 6, the initial security states can also be spe-
cific to the organization if they are determined based on
security alerts generated in response to network activity of
that organization.

FIG. 7 is a schematic block diagram of a security alert
prioritization system hosted at a computing system, accord-
ing to an implementation. In some implementations, a com-
puting system hosting a security alert prioritization system is
itself referred to as a security alert prioritization system. In the
example illustrated in FIG. 7, computing system 700 includes
processor 710, communications interface 720, and memory
730. Processor 710 is any combination of hardware and soft-
ware that executes or interprets instructions, codes, or signals.
For example, processor 710 can be a microprocessor, an
application-specific integrated circuit (ASIC), a distributed

30

35

40

45

14

processor such as a cluster or network of processors or com-
puting systems, a multi-core or multi-processor processor, or
a virtual or logical processor of a virtual machine.

Communications interface 720 is a module via which pro-
cessor 710 can communicate with other processors or com-
puting systems via communications link. For example,
reporting module 737 can provide prioritized security alerts
to a security monitor via communications interface 720, and
identification module 735 can receive security alerts from an
intrusion detection system via communications interface 720.

Communications interface 720 can include a network
interface card and a communications protocol stack hosted at
processor 710 (e.g., instructions or code stored at memory
730 and executed or interpreted at processor 710 to imple-
ment a network protocol) to receive and send data. As specific
examples, communications interface 720 can be a wired
interface, a wireless interface, an Ethernet interface, a Fiber
Channel interface, an InfiniBand interface, an IEEE 802.11
interface, or some other communications interface via which
processor 710 can exchange signals or symbols representing
data to communicate with other processors or computing
systems.

Memory 730 is a processor-readable medium that stores
instructions, codes, data, or other information. As used
herein, a processor-readable medium is any medium that
stores instructions, codes, data, or other information non-
transitorily and is directly or indirectly accessible to a pro-
cessor. Said differently, a processor-readable medium is a
non-transitory medium at which a processor can access
instructions, codes, data, or other information. For example,
memory 730 can be a volatile random access memory
(RAM), a persistent data store such as a hard disk drive or a
solid-state drive, a compact disc (CD), a digital video disc
(DVD), a Secure Digital™ (SD) card, a MultiMediaCard
(MMC) card, a CompactFlash™ (CF) card, or a combination
thereof or other memories. Said differently, memory 730 can
represent multiple processor-readable media. In some imple-
mentations, memory 730 can be integrated with processor
710, separate from processor 710, or external to computing
system 700.

Memory 730 includes instructions or codes that when
executed at processor 710 implement operating system 731,
identification module 735, priority module 736, and reporting
module 737. Identification module 735, priority module 736,
and reporting module 737 can collectively be referred to as a
security alert prioritization system. As discussed above, a
security alert prioritization system can include additional or
fewer modules (or components) than illustrated in FIG. 7.

As illustrated in FIG. 7, memory 730 is operable to store
host-domain access map 739. For example, during runtime or
execution of the security alert prioritization system including
identification module 735, priority module 736, and reporting
module 737, host-domain access map 739 (or arepresentation
thereof) can be received via communications interface 720
from an inference module. As another example, the security
alert prioritization system including identification module
735, priority module 736, and reporting module 737 can also
include an inference module (not shown) to generate host-
domain access map 739 based on network activity records.

In some implementations, computing system 700 can be a
virtualized computing system. For example, computing sys-
tem 700 can be hosted as a virtual machine at a computing
server. Moreover, in some implementations, computing sys-
tem 700 can be a computing appliance or virtualized comput-
ing appliance, and operating system 731 is a minimal or
just-enough operating system to support (e.g., provide ser-
vices such as a communications protocol stack and access to

US 9,124,621 B2

15

components of computing system 700 such as communica-
tions interface 720) identification module 735, priority mod-
ule 736, and reporting module 737. As a specific example,
computing system 700 can be an intrusion detection system
appliance.

The security alert prioritization system including identifi-
cation module 735, priority module 736, and reporting mod-
ule 737 can be accessed or installed at computing system 700
from a variety of memories or processor-readable media. For
example, computing system 700 can access a security alert
prioritization system at a remote processor-readable medium
via communications interface 720. As a specific example,
computing system 710 can be a network-boot device that
accesses operating system 731, identification module 735,
priority module 736, and reporting module 737 during a boot
process (or sequence).

As another example, computing system 700 can include
(not illustrated in FIG. 7) a processor-readable medium
access device (e.g., CD, DVD, SD, MMC, or a CF drive or
reader), and can access identification module 735, priority
module 736, and reporting module 737 at a processor-read-
able medium via that processor-readable medium access
device. As a more specific example, the processor-readable
medium access device can be a DVD drive at which a DVD
including an installation package for one or more of identifi-
cation module 735, priority module 736, and reporting mod-
ule 737 is accessible. The installation package can be
executed or interpreted at processor 700 to install one or more
ofiidentification module 735, priority module 736, and report-
ing module 737 at computing system 700 (e.g., at memory
730). Computing system 700 can then host or execute one or
more of identification module 735, priority module 736, and
reporting module 737.

In some implementations, identification module 735, pri-
ority module 736, and reporting module 737 can be accessed
at or installed from multiple sources, locations, or resources.
For example, some of identification module 735, priority
module 736, and reporting module 737 can be installed via a
communications link (e.g., from a file server accessible via a
communication link), and others of identification module
735, priority module 736, and reporting module 737 can be
installed from a DVD.

In other implementations, identification module 735, pri-
ority module 736, and reporting module 737 can be distrib-
uted across multiple computing systems. That is, some of
identification module 735, priority module 736, and reporting
module 737 can be hosted at one computing system and
others of identification module 735, priority module 736, and
reporting module 737 can be hosted at another computing
system. As a specific example, identification module 735,
priority module 736, and reporting module 737 can be hosted
within a cluster of computing systems where each of identi-
fication module 735, priority module 736, and reporting mod-
ule 737 is hosted at multiple computing systems, and no
single computing system hosts each of identification module
735, priority module 736, and reporting module 737.

While certain implementations have been shown and
described above, various changes in form and details may be
made. For example, some features that have been described in
relation to one implementation and/or process can be related
to other implementations. In other words, processes, features,
components, and/or properties described in relation to one
implementation can be useful in other implementations. As
another example, functionalities discussed above in relation
to specific modules or elements can be included at different
modules, engines, or elements in other implementations. Fur-
thermore, it should be understood that the systems, apparatus,

10

15

20

25

30

40

45

50

55

60

65

16

and methods described herein can include various combina-
tions and/or sub-combinations of the components and/or fea-
tures of the different implementations described. Thus, fea-
tures described with reference to one or more
implementations can be combined with other implementa-
tions described herein.

As used herein, the term “module” refers to a combination
ot hardware (e.g., a processor such as an integrated circuit or
other circuitry) and software (e.g., machine- or processor-
executable instructions, commands, or code such as firm-
ware, programming, or object code). A combination of hard-
ware and software includes hardware only (i.e., a hardware
element with no software elements), software hosted at hard-
ware (e.g., software that is stored at a memory and executed or
interpreted at a processor), or hardware and software hosted
at hardware.

Additionally, as used herein, the singular forms “a,” “an,”
and “the” include plural referents unless the context clearly
dictates otherwise. Thus, for example, the term “module” is
intended to mean one or more modules or a combination of
modules. Moreover, the term “provide” as used herein
includes push mechanism (e.g., sending data to a computing
system or agent via a communications path or channel), pull
mechanisms (e.g., delivering data to a computing system or
agent in response to a request from the computing system or
agent), and store mechanisms (e.g., storing data at a data store
or service at which a computing system or agent can access
the data). Furthermore, as used herein, the term “based on”
means “based at least in part on.” Thus, a feature that is
described as based on some cause, can be based only on the
cause, or based on that cause and on one or more other causes.

What is claimed is:

1. A non-transitory processor-readable medium storing
code representing instructions that when executed by a pro-
cessor cause the processor to:

identify ahost associated with a security alert and a domain

associated with the security alert, wherein the security
alert is generated in response to a communication
between the host and the domain;
access a first security state associated with the host and a
second security state associated with the domain; and

compute a priority of the security alert based on a host-
domain access map having a plurality of nodes, the
plurality of nodes including a first node associated with
the host and a second node associated with the domain,
the host-domain access ma having an edge between the
first node and the second node, the first node assigned
the first security state based on a confidence measure
associated with the security alert.

2. The processor-readable medium of claim 1, further com-
prising instructions that when executed by the processor
cause the processor to:

provide the security alert and the priority to a security

monitor.

3. The processor-readable medium of claim 1, wherein the
first security state associated with the host and the second
security state associated with the domain are defined by belief
propagation.

4. The processor-readable medium of claim 1, further com-
prising instructions that when executed by the processor
cause the processor to:

generate the host-domain access map; and

define a security state for each node from the plurality of

nodes using belief propagation, wherein the security
state for the first node associated with the host comprises

US 9,124,621 B2

17

the first security state and the security state for the sec-
ond node associated with the domain comprises the sec-
ond security state.

5. The processor-readable medium of claim 1, further com-
prising instructions that when executed by the processor
cause the processor to:

generate the host-domain access map based at least in part

on the security alert;
assign aninitial security stateto each node in a subset of the
plurality of nodes based on a plurality of confidence
measures related to a plurality of security alerts; and

apply an iteration of belief propagation to the initial secu-
rity state for each node of the plurality of nodes, wherein
the security state for the first node associated with the
host comprises the first security state and the security
state for the second node associated with the domain
comprises the second security state.

6. The processor-readable medium of claim 1, wherein the
second security state associated with the domain comprises a
default security state in response to a determination that the
domain is unknown.

7. The processor-readable medium of claim 1, wherein:

the first security state associated with the host comprises a

multiclass classification vector; and

the second security state associated with the domain com-

prises a multiclass classification vector.

8. The processor-readable medium of claim 1, wherein:

the priority of the security alert comprises a first priority in

response to a first determination that the first security
state associated with the host indicates a severe security
risk and the second security state associated with the
domain indicates a severe security risk; and

the priority of the security alert comprises a second priority

different from the first priority in response to a second
determination that the first security state associated with
the host indicates a low security risk and the second
security state associated with the domain indicates a low
security risk.

9. The processor-readable medium of claim 1, wherein:

the priority of the security alert comprises a first priority in

response to a first determination that the first security
state associated with the host indicates a severe security
risk and the second security state associated with the
domain indicates a severe security risk; and

the priority of the security alert comprises a second priority

different from the first priority in response to a second
determination that the first security state associated with
the host indicates a first security risk different from a
second security risk indicated by the second security
state associated with the domain.

10. A security alert prioritization system, comprising:

a graph generator that generates a host-domain access map

based on network activity records;

an inference module that:

seeds the host-domain map based on a first confidence
measure associated with a security alert; and

applies belief propagation to the host-domain access
map to assign a security state to each node within the
host-domain access map;

an identification module that identifies a host associated

with the security alert and a domain associated with the
security alert; and

apriority module that assigns a priority to the security alert

using a first security state assigned to a first node within
the host-domain access map associated with the host and
a second security state assigned to a second node within
the host-domain access map associated with the domain.

10

15

20

25

30

35

40

45

55

60

65

18

11. The security alert prioritization system of claim 10,
further comprising:

a reporting module that reports the security alert and the
priority assigned to the security alert to a security moni-
tor.

12. The security alert prioritization system of claim 10,

wherein:

a first network activity record of the network activity
records includes the security alert, the security alert
being one of a plurality of security alerts generated at an
intrusion detection system; and

the inference module seeds the host-domain access map
based on confidence measures associated with the plu-
rality of security alerts, the first confidence measure
being one of the confidence measures.

13. The security alert prioritization system of claim 10,

wherein:
the inference module adds a new node to the host-domain
access map and assigns a default security state to the new
node in response to a determination that the domain
associated with the security alert is not included in the
host-domain access map, the new node being associated
with the domain.
14. The security alert prioritization system of claim 10,
wherein the security state assigned to each node within the
host-domain access map comprises a multiclass classification
vector.
15. A computing system, comprising a processor-readable
medium storing code representing instructions that when
executed by a processor cause the processor to implement a
security alert prioritization system including:
an identification module that identifies a host associated
with a first security alert of a plurality of security alerts
and a domain associated with the first security alert, the
first security alert generated in response to network traf-
fic between the host and the domain;
a priority module that:
determines a joint probability of a first class and a second
class, the first class represented in a first security state
assigned to a first node within a host-domain access
map associated with the host and the second class
represented in a second security state assigned to a
second node within the host-domain access map asso-
ciated with the domain; and

assigns a priority to the first security alert using the joint
probability of the first security state assigned to the
first node and a second security state assigned to the
second node; and

a reporting module that reports the first security alert and
the priority assigned to the first security alert to a secu-
rity monitor.

16. The computing system of claim 15, wherein the first
security state assigned to the first node within the host-do-
main access map associated with the host and the second
security state assigned to the second node within the host-
domain access map associated with the domain are defined by
belief propagation applied to the host-domain access map.

17. The computing system of claim 15, further comprising:

an inference module that seeds the host-domain access
map based on a confidence measure of each security
alert from the plurality of security alerts and applies
belief propagation to the host-domain access map to
assign the first security state to the first node within the
host-domain access map associated with the host and
assign the second security state to the second node
within the host-domain access map associated with the
domain.

US 9,124,621 B2

19

18. The computing system of claim 15, wherein:

the priority module assigns a first priority to the first secu-
rity alert in response to a first determination that the first
security state associated with the host indicates a severe
security risk and the second security state associated
with the domain indicates a severe security risk; and

the priority module assigns a second priority different from
the first priority to the first security alert in response to a
second determination that the first security state associ-
ated with the host indicates a low security risk and the
second security state associated with the domain indi-
cates a low security risk.

19. The computing system of claim 15, wherein:

the first security state assigned to the first node within the
host-domain access map associated with the host com-
prises a first multiclass classification vector;

5

10

15

20

the second security state assigned to the second node
within the host-domain access map associated with the
domain comprises a second multiclass classification
vector; and

the priority module determines a joint probability of each

class represented in the first security state assigned to the
first node within the host-domain access map associated
with the host and in the second security state assigned to
the second node within the host-domain access map
associated with the domain to assign the priority to the
first security alert.

20. The computing system of claim 15, wherein the first
security alert comprises an indication that the network traffic
has been determined to be potentially malicious based on
analysis of communication between the host and the domain
and the priority comprises a classification of security issue
significance based on a security risk.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,124,621 B2 Page 1 of 1
APPLICATION NO. : 13/629222

DATED : September 1, 2015

INVENTOR(S) : Pratyusa Kumar Manadhata et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 16, line 48 approx., in Claim 1, delete “ma” and insert -- map --, therefor.

Signed and Sealed this
Fifth Day of July, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

